lodine Clock Reaction: Method of Initial Rates

Interactive Demonstration

- Visualization and application of Method of Initial Rates
- Student prediction based on conceptual understanding of kinetics
- A Power Point Lecture slide set to accompany this demonstration is included.
- A video is available to accompany the demonstration
- A molecular scene comparing the same reaction at two different concentrations. The system that has twice the concentration as the other has an initial rate of reaction twice that as the other.

Iodine Clock Reaction: Method of Initial Rates

Thomas J. Greenbowe
Deborah B. Exton
Randy Sullivan
Department of Chemistry \& Biochemistry
University of Oregon
Eugene, OR 97403

Demo: lodine clock reaction

$$
\begin{aligned}
& 3 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{I}_{3}^{-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{aligned}
$$

$\mathrm{I}_{3}{ }^{-}+$starch \rightarrow starch $-\mathrm{I}_{5}{ }^{-}$complex $+\mathrm{I}^{-}$

lodine Clock Reaction - Kinetics

Iodine Clock Reaction - Kinetics

$$
\begin{aligned}
& 3 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})==>\mathrm{I}_{3}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{I}_{3}^{-}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})=>3 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(\mathrm{aq}) \\
& 2 \mathrm{I}_{3}^{-}(\mathrm{aq})+\text { starch }==>\text { starch- } \mathrm{I}_{5}^{-} \text {complex }+\mathrm{I}^{-}(\mathrm{aq})
\end{aligned}
$$

Iodine Clock Reaction - Kinetics

$\underset{\text { of }}{\text { Experiment }} \quad\left[\mathrm{H}_{2} \mathrm{O}_{2}\right], M \quad[\mathrm{KI}], \mathrm{M} \quad$ Reaction Time Initial Rate

A
$0.045 \quad 0.100$

B
0.045
0.050

C
$0.0225 \quad 0.100$

Identify the dependent, independent, and control variables in this series of experiments.

We will do experiment " A " first. Record the time it takes for the

Lecture Demonstration Iodine Clock Reaction

Iodine Clock Reaction - Kinetics

Experiment $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right], \mathrm{M} \quad[\mathrm{KI}], \mathrm{M}$ Reaction Time Initial Rate of
A
0.045
$0.100 \quad 15 \mathrm{sec}$
B
$0.045 \quad 0.050$
C
$0.0225 \quad 0.100$

Predict the time it will take for the reaction to be completed for Experiments B and C.

Same reaction, different concentration

Initial Which system will have the faster initial rate?
A. System X
B. System Y

System Y
C. Both will have the same rate

Iodine Reaction - Kinetics

Experiment $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right], \mathrm{M} \quad[\mathrm{KI}], \mathrm{M}$ Reaction Time Initial Rate of
$0.045 \quad 0.100 \quad 15 \mathrm{sec}$
B
$0.045 \quad 0.050$
$\begin{array}{lll}C & 0.0225 & 0.100\end{array}$
Estimate the rate of reaction for each experiment.

Iodine Clock Reaction - Kinetics

Experiment $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right], \mathrm{M} \quad[\mathrm{KI}], \mathrm{M}$ Reaction Time Initial Rate of of Reaction
A
$0.045 \quad 0.100 \quad 15 \mathrm{sec}$
B
0.045
0.050
30 sec
C
$0.0225 \quad 0.100 \quad 30 \mathrm{sec}$

What are the orders of reaction for $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and $[\mathrm{KI}]$?
Write the rate law.

Iodine Clock Reaction - Kinetics

Experiment $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right], \mathrm{M} \quad[\mathrm{KI}], \mathrm{M}$ Reaction Time Initial Rate of of Reaction
A
0.045
$0.100 \quad 15 \mathrm{sec}$
B
0.045
0.050
30 sec
C
$0.0225 \quad 0.100 \quad 30 \mathrm{sec}$

What are the orders of reaction for $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and $[\mathrm{KI}]$? Write the rate law.
experimentally determined (by us!) rate law:

$$
\text { rate }=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{1}[l-]^{1}
$$

